3.1
Triangles, Congruence Relations, SAS Hypothesis

3.2
Taxicab Geometry:  Geometry without SAS Congruence

3.3
SAS, ASA, SSS Congruence, and Perpendicular Bisectors

Absolute Geometry

We are building axioms that will result in one of two choices*:  Euclidean Geometry or Hyperbolic Geometry.  The collection of axioms through SAS is known as Absolute Geometry.

In section 3.3 ½  we get a different set of axioms called Neutral Geometry.  These axioms allow choices that will produce Spherical, Hyperbolic, or Euclidean Geometry.  We make the choice that creates Spherical Geometry and study it for a bit and then we come back to Absolute Geometry.

Homework assignment 3

*in Chapter 6 – we’ve got a way to go

3.1
Triangles, Congruence Relations, and SAS Hypothesis

This section begins with a very careful definition of a triangle.  A triangle is a point set composed of distinct point sets connected in a very specific way.  Please read the definition and pay special attention to how much really does need to be said.  

Figure 3.1 brings some additional vocabulary that you should be familiar with:  included side, vertex opposite a side, side opposite an angle, included angle.  The author was really saving trees by illustrating these terms rather than defining them in words.

Congruence is a property of two sets that is related to equality but not quite the same thing.  Set equality means that the elements of one set are exactly the same as the elements of another set (which is to say that there’s one set with two names).  Sometimes it’s not a all obvious that there’s only one set and you need to PROVE that there’s only one set with a set containment proof.  However, when we say two sets are congruent, we do NOT mean that there’s only one set with two names, we mean that two distinct sets share a property that makes them alike in the sense of that property.  The symbol for correspondence, 
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, is reminiscent of an equality but is not quite an equality symbol.

For example:
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Two distinct segments are congruent iff their lengths are the same.  

These two segments are congruent and not equal.

They are NOT equal; they are not subsets of one another.  What they share is that the number that describes the distance from one endpoint to another is the same number for both sets.  We denote this relationship in the 
following manner:
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Two distinct angles are congruent iff their measures are equal.

Once you move beyond these simple objects, you need the notion of a correspondence to begin talking about congruence.  A correspondence is a relationship that identifies the points of one set pair-wise with the points of another set.  For triangles we will match vertices and sides between two triangles.  There are MANY correspondences possible between two triangles.

Given (ABC and (XYZ, there are 6 possible correspondences between vertices and sides.  First start with a correspondence between vertices and let it induce the correspondence between the sides.

Here is one of the 6 possible correspondences between the vertices:
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This induces a correspondence between the sides:
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Taken together, they are a correspondence between the 6 parts of each triangle.

Another, different correspondence is 
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.  The induced correspondence between the sides will change, of course.

Two distinct triangles are congruent iff 3 pairs of corresponding angles and 3 pairs of corresponding sides are congruent.


Definition, page 123

There are 6 pairs to check before we can declare the triangles congruent.

(Yes, SAS is a shortcut to this, but it’s an axiom we don’t get for two more sections so we’re stuck with the long way).  

Note the naming convention:  saying (ABC 
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 (DEF means that the vertices correspond in the order named.  (ABC 
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 (EDF is a DIFFERENT correspondence to the one first mentioned.

CPCF is a short way of saying “congruent parts of congruent figures are congruent”.

Properties of Congruence:
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Reflexive Law

An object is congruent to itself.


Law of Symmetry
If object 1 is congruent to object 2, then O2 
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Transitive Law
If A
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B and B
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These properties apply to congruence between segments, angles, and triangles, squares, quadrilaterals, etc.  The author has illustrated these properties using triangles, but could have done so with congruent segments or congruent angles or other polygons.

Some of you will recognize this as an Equivalence Relation.  If so, great.  If you don’t know that definition, relax it’s not a huge part of the course.  If you get a moment, google it, though; it’s a handy concept and you might run into it again.

Discovery Lesson:
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Suppose (ABC is a given triangle.  Sketch it:

Now (ABC and (BAC are identical sets…so (ABC = (BAC.

Now, may I say that (ABC ( (BAC?  

A.
What are the correspondences between this set and itself?


name the corresponding angles and sides

B.
What should be congruent if there is a congruence relation?


ie, what does CPCF apply to?

C.
What do I need to change about my earlier characterization of (ABC?


If this is to be true, is it scalene?

What needs to change to be true about (ABC if (ABC ( (BAC is true? Is (ABC an arbitrary triangle?

If you found that (ABC needs to be isosceles, then you’ve got it.  

We’ll use this result in a later section.

We’re going to add the SAS Axiom in Section 3.3.  By way of showing that we absolutely NEED this shortcut to congruence as an axiom, we will study Taxicab Geometry in Section 3.2.  It is a geometry in which SAS is NOT true.  Once we adopt SAS, the Taxicab Geometry will no longer model the axiom collection we’ve got.
Up to now we’ve got the 5 Incidence Axioms, the 4 Distance or Metric Axioms, the 3 Angle Axioms, and the Plane Separation Axiom.  Taxicab Geometry is a geometry that is a model for all 13 of these axioms.  NOTE: SAS is NOT true in Taxicab Geometry, but all the axioms that precede it ARE true.  So SAS is an independent axiom that needs to be stated as we continue to move toward Euclidean Geometry in 3.3.

Homework hints

Problem 8
set up trial correspondences.  check out the answers to #9…it’s a similar problem

Problem 12

This one is short, but 3.2 is long, folks.

3.2
Taxicab Geometry:  Geometry without SAS Congruence

Undefined terms: 

point, line, plane, space 

Incidence Axioms:



I1
Each two distinct points determines a line.

I2
Three noncollinear points determine a plane.

I3
If two points lie in a plane, then any line containing 
them lies in that plane.


I4
If two distinct planes meet, their intersection is a line.

I5
Space consists of at least 4 noncollinear points, and 
contains three noncollinear 

points.  Each plane is a set of points of which at least 3 are noncollinear, and each 
line is a set of at least two distinct points.

Distance or Metric axioms:

D1
Each pair of points A and B is associated with a unique real number called the distance from A to B, denoted AB.



D2 
For all points A and B, AB
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0 with equality only when A = B.

D3
For all points A and B, AB = BA.

D4
Ruler Postulate  


The points of each line L may be assigned to the entire set of real numbers x, 
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 called coordinates in such a manner that


(1)
each point on L is assigned to a unique coordinate


(2)
no two points are assigned to the same coordinate

(3)
any two points on L may be assigned to the coordinate zero and a positive real number, respectively

(4)
if points A and B on L have coordinates a and B, then AB = 
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Angle Axioms:

A1 
Existency of Angle Measure






Each angle (ABC is associated with a unique real number between 0 and 180, 
called its measure and denoted m(ABC,  No angle can have measure 0 or 180.

A2 
Angle Addition Postulate





If D lies in the interior of (ABC, then m(ABD + m(DBC = m(ABC.  
Conversely, if m(ABD + m(DBC = m(ABC, then ray 
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 passes through an 
interior point of  (ABC.

A3
Protractor Postulate







The set of rays 
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 lying on one side of a given line 
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, including ray 
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, called coordinates, in 
such a manner that


(1)
each ray is assigned to a unique coordinate


(2)
no two rays are assigned to the same coordinate


(3)
the coordinate of 
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 is 0


(4)
if rays 
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have coordinates c and d, then m(CAD = 
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A 4 
Linear Pair Axiom:
A linear pair of angles is a supplementary pair.

H1
Plane Separation Axiom


Let L be any line lying in plane P.  The set of all points in P not on L consists of 
the union of two subsets 
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of P such that:


a.
Each set is convex.


b.
The sets are disjoint (i.e. they share no points)


c.
If A is in 
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 and B is in 
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, then the segment 
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intersects the line L.

To model these axioms, we’ll begin by choosing the Cartesian Plane with it’s infinite number of point pairs.  And we’ll measure the distance between two points with the Taxicab Metric:


Given point X = (a, b) and point Y = (c, d).


The distance from point X to point Y, XY = 
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We will measure angles exactly the same way we’ve always done:  with a protractor

(because the Protractor Postulate is an axiom for Taxicab Geometry (TCG)).

Suppose you have points:
x = (3, 0), y = (6, 0), and z = (6, 4) 

In the Cartesian Plane, connected by line segments, they look like this:
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This picture is the same in TCG and EG (Euclidean Geometry).

And this is a right triangle in both geometries.  The angle measures are exactly the same in Taxicab Geometry and in Euclidean geometry:  90, 37, and 53. (remember our convention – no degree symbols in this book).
The distances between the points are NOT the same, however.

In Euclidean Geometry, this is the old famous 3 – 4 – 5 right triangle.

In Taxicab Geometry:

XY = 3, 
YZ = 4, 

and – here’s the startling one –  XZ = 7.

Check it out with the formula.

In Euclidean Geometry we can chat casually about the Pythagorean Theorem and how the 3 – 4 – 5 right triangle illustrates it.  In Taxicab Geometry, the Pythagorean Theorem is NOT TRUE; it’s not a theorem at all.  The Pythagorean Theorem is a Euclidean-specific theorem.  We’re way too early in the axioms for it to be true.

Taxicab Geometry is categorical, infinite, and non-Euclidean.

So now, both geometries have the same axioms up to now.  Both use the Cartesian Plane for points in two-dimensions.  But only EG has the Pythagorean Theorem.  

Both geometries have the geometric coordinates specified in D4.  But it should not surprise you if the actual number that is the coordinate for a given point is different in EG and TCG.  Let’s review what we’ve got for Euclidean geometric coordinates:

Given the line y = 3x ( 2 and a point on the line (a, 3a ( 2).  The Euclidean geometric coordinate of that point is 
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.  
[The formula is 
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 , see page 9 in the 2.4 notes].

The Taxicab Geometric Coordinate multiplier is 
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.  
So the TCG coordinate of the same point (a, 3a ( 2) will be 3a + 1.

Under no circumstances is 
[image: image33.wmf]a10

 the same number as 3a + 1.  
So both geometries have geometric coordinates and each has a different way of calculating that number that is the coordinate. 

Let’s do an example that has lots of points:

Given y = 3x.

	Cartesian Coordinate
	Taxicab Coordinate                                                     (
[image: image34.wmf]x(m1)

+

)
	Euclidean Coordinate
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So both geometries have geometric coordinates, but the actual coordinate for a given point is different and depends on which geometry you’re in.

Now, let’s explore some more of the properties that are present but different in both geometries.

Let’s look at betweeness.  The definition is the same.

Betweenness:


Suppose A, B, and C are distinct collinear points. 
If B is between A and C, then the distance from A to B plus the distance from B to C sums to the distance from A to C.  On the other hand, if the distance from AB plus the distance from B to C sums to the distance from A to C, then we know that B is between A and C.




[see page 79, 2.4]
Theorem 3.3.1
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On any given line L, betweeness under the Euclidean and Taxicab Metrics coincide.

Well there needs to be some discussion here.  This theorem doesn’t say that betweeness is identical or “the same”.  The author means that there’s some overlap in the notion.  What he’s suppressing is that his “betweeness” is “strictly between”…and there’s “metrically between” as another related notion.
Let’s look at the points (1, 1) to (9, 5).
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The midpoint is (5, 3).  We have a unique midpoint for each line segment in both geometries.  And the midpoint is strictly between the endpoints in both geometries…it’s collinear.
In EG the points between the endpoints are the points on the line segment itself.  These are the points that add up correctly to the Euclidean distance 
[image: image41.wmf]45

.

The quickest way to “measure” in TCG is to start at one point and go over and up counting unit steps as you go to the second point.  The TCG distance from the two points A and B is 8 over and 4 up:  12.   Points that are “between” A and B will add up to 12 when you add the distance from A to the point and from the point to B.
Let’s work on a demonstration that will show a refinement to the idea of between.  We’re going to call this refinement “metrically between”.  

First, is the midpoint between the endpoints in TCG?  Check:  the midpoint is 4 over and 2 up from (1, 1), so it’s 6 away.  Then it’s another 4 over and 2 up to (9, 5) for a total of 6 and these two distances sum to 12.  If you check (3, 2) and (7, 4) you will find that they are between as well.

Now let’s check a few other points.
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Is point A (4, 4) between the endpoints?  Well from (1, 1) it’s 3 over and 3 up, 6 away. And from A to (9, 5) it’s 5 over and 1 up, 6 away…so it adds up correctly to 12.

Is point B (5, 2) between the endpoints?  Well from (1, 1) it’s 4 over and 1 up, 5 away.

And from B to (9, 5) it’s 4 over and 3 up, 7 away…so it adds up correctly to 12.

Is point C (9, 3) between the endpoints?  Well from (1, 1) it’s 8 over and 2 up, 10 away.

And from C to (9, 5) it’s 2 up, 2 away…so it adds up correctly to 12.

This is a situation that would NEVER, EVER happen in Euclidean Geometry.  These points are technically between in the “adds up right” sense but they’re NOT collinear.  So we’ll tweak our definition.

Metrically between:  Point X is metrically between points A and B if the sum of the distances AX + BX = AB.  [we don’t use the two dashes notation, though – that for strictly between].  Note too that the “collinear” statement is missing.
So, just how many of these metrically between points are there?  Infinitely many.

Here’s a picture of where they are.
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So we have betweeness in both geometries and we have the additional notion “metrically between” that is Taxicab-specific.  And strict betweeness does coincide…it just got stretched a bit into this newer idea: metrically between

Theorem 3.1.2
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In taxicab geometry, the SAS Hypothesis for two triangles does not always imply that the triangles are congruent.
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All of the definitions up to this section are exactly the same.  Triangles, under some correspondence, that have corresponding vertices and sides congruent are congruent.  Note, though, that you have to check all 6 pieces of the correspondence.

Here are two triangles:  (ABC on the left and (DEF on the right.  They are both right triangles, no question about that.  (C and (E are the right angles.  The measure of the other two angles is 45 each.  So they’re both isosceles right triangles. 

[Note that the sum of the interior angles for a triangle is 180 in both geometries.]

Let’s set up a correspondence
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Now let’s measure some side lengths.

(ABC

In TCG:
(ABC has side length 4 and is equilateral:  AB = 4, AC = 4, and CB = 4.

So, in TCG we have equilateral right triangles – an emphatically non-Euclidean situation.

In EG:

(ABC is isosceles with legs length 
[image: image44.wmf]22

 and base length 4

(DEF

In TCG:
(DEF is isosceles with sides 4 and hypotenuse 8

In EG:

(DEF is isosceles with sides 4 and hypotenuse 
[image: image45.wmf]42

 

Are these two triangles congruent?  Well, obviously not.  The corresponding angles are congruent but the sides are not.

Here’s the defining difference between TCG and EG:  If we use SAS as a congruence criterion, then we could easily say that in TCG the two triangles are congruent.  BOTH right angles have side lengths 4.  And if you’re chanting SAS, well, SAS works in one sense: 4 – 90 – 4 on (ABC and (DEF, but they’re really NOT congruent triangles because the hypotenuse are not congruent.  So this axiom is not true in TCG.  And, in 3.3 when we adopt it, TCG will no longer be a model for our axiom system.

Text example 1
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Let’s talk about Taxicab circles.

The geometric definition of a circle is:
The locus of points equidistant from a given point.
This definition works in EG and in TCG.
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On the graph, mark off all the points that are 3 away from (0, 0).  This will be the circle of radius 3, centered at (0, 0).  I’ve put a couple of hint-points on the graph already.

Did you get a rhombus, diamond shape?  Now, I contend that you’ve been using this Taxicab circle since you could drive.  How many times have you arranged to pick up someone downtown and said “Just come out of the building and I’ll pick you up.  I’ll circle the block until I see you”.  “Circle the block” is taxicab talk.

In example one, you get the formula for a taxicab circle centered at (0, 0).  Note the similarities with the Euclidean formula – the notion of “negative” is erased by the formula, the two positive numbers are added and the sum equals the radius (or something related to the radius).  In EG:  
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 is the formula for a circle centered at (0, 0) with radius 4.

So both geometries have circles and define circles in the same way.  The shape of the circle and the formula for the circle are quite different, though.

Text Example 2:
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You have a TCG triangle that is equilateral.   It is, of course, scalene in EG.  If you use the Law of Cosines with the Euclidean distances or an actual protractor to measure the angles, you will find that all 3 angles have different measure.  So, while we do have equilateral triangles in both geometrics.  The “fact” that equilateral triangles are equiangular is a Euclidean fact, not some Universal Truth kind of fact.

Text Example 3:
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The geometric definition of an ellipse is the locus of points whose distances from two fixed points sums to a constant.  Note the difference in the shape – both geometries have ellipses that meet this definition, but they’re shaped differently.  

Text Example 4:
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It should be no surprise that we have parabolas in both geometry, nor that the geometric definition of a parabola is the same in both geometries…and, after circles and ellipses, I hope you’re not even startled at the look of the TCG parabola.  Pace through the work, it’s a well-done example.

Enrichment 1:

In the next section we’ll discuss perpendicular bisectors.  Here’s the definition of the perpendicular bisector of a line segment 
[image: image48.wmf]AB

.  The set of all points, x, that are equidistant from the endpoints of the segment is the perpendicular bisector of that segment.

So, the midpoint of a segment is a point of the perpendicular bisector.  Now, both geometries have these; it’s just that the perpendicular bisectors in TCG are a little bit peculiar (no surprises there, huh?)
Let’s go back to our line segment from (1, 1) to (9, 5).
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Measure the distances from the points on the graph to each endpoint.  Does this look like the perpendicular bisectors that you’re used to?   More importantly, does it meet the definition to be a perpendicular bisector?

The word “bisector” is really a Euclidean notion.  In TCG this set of points is not “perpendicular” but the name has stuck because EG has been around much longer than TCG.

homework hints.

Problem 1


Problem 2

Problem 3

Problem 4
use the Law of Cosines and the Euclidean distances to approximate the angle measures to the nearest degree (make sure the approximations add to 180).

Problem 6

Problem 9

Problem 13 & 15 combined 


These add a new dimension to the idea of a TCG perpendicular bisector.

Come up with a way to distinguish between the two cases…when will you get a (crooked) line and when will you get a region of space for the equidistant points?

3.3
SAS, ASA, SSS Congruence, and Perpendicular Bisectors

Axiom C1  SAS Postulate:

If the SAS Hypothesis holds for two triangles under some correspondence between their vertices, then the triangles are congruent.

When we adopt this axiom we are only one axiom away from Euclidean Geometry.  We will spend the rest of Chapter 3 finding out what we can without picking a situation for parallel lines.  And we’ll take a detour through Spherical Geometry while we’re in Chapter 3 as well.

Thm 3.3.1
ASA Theorem
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There’s an outline of the proof in the text preceding the theorem on page 140.  Please write it out nicely as a prose proof for your own practice.
Examples 1 and 2 are nice typical uses of the Theorem 3.3.1.  I commend them to your attention.

In-text Example 3, however, is a real proof:
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A line that bisects an angle also bisects any segment perpendicular to it.  The segment ends are angle points, one on each side of the angle.

Please be sure to rewrite the proof in prose and study it to discover exactly how it works.

Lemma A
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In (ABC, if side AC is congruent to side BC, then (A is congruent to (B.

Set up a correspondence from the triangle to itself. 

(just like the Discovery lesson on page 124)

(CAB ( (CBA.  This works because the triangle is isosceles.  Therefore by CPCF the two angles are congruent.

Thm 3.3.2
Isosceles Triangle Theorem
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A triangle is isosceles iff the base angles are congruent.

By lemma, if the triangle is isosceles, then the base angles are congruent.

If the base angles are congruent, then by the ASA Theorem, (CAB ( (CBA…so the sides are congruent by CPCF.

Example 4 is a construction proof problem and typical of many homework and test problems.

The three lemmas on page 144 summarize some basic facts about parts of an isosceles triangle.

Definition:

The Perpendicular Bisector to a segment  
[image: image49.wmf]AB

 is the line that both bisects the segment and is perpendicular to it.  This is NOT a definition that we would use in Taxicab Geometry.

Thm 3.3.3
Perpendicular Bisector Theorem

The set of all points equidistant from two distinct points A and B is the perpendicular bisector of the segment AB.

This is, then, a set equality proof.  The proof shows that

· the set of equidistant points are a subset of the perpendicular bisector point set and

· the p. bisector points are contained in the set of equidistant points

The proof in the book is in the approved format.  Please pay attention to it with an eye toward seeing the strategy of the proof.

Thm 3.3.4
The SSS Theorem is discussed in the Discovery Lesson on page 147.  Make sure you attempt it the author’s way.  You may also google it to see the other ways that it can be proved.

Example 5 (page 145) is a nice review of the material in this section.

Example 6
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This is another construction proof.  These are designed to give you exercise in using the new material and with the process of proving.  I’ve rewritten is in the approved style.

Given the following quadrilateral with angles A, B, and C right angles.

Prove that side AD is congruent to side DC.  

Prove that angle D is also a right angle.
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Construct diagonal AC.  Note that (ABC is isosceles and that (BAC ( (BCA.

Now m(CAD = 90 ( m(BAC

        m(ACD = 90 ( m(ACB = 90 ( m(BAC = m(CAD.

Thus, (ADC is isosceles and by CPCF side AD is congruent to side DC.  If, in addition, 
[image: image50.wmf]BCCD
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, 
then all four sides congruent.  
By 3.3.4 SSS then (ABC ( (ADC so by CPCF

m(B = m(D = 90.  (
Note that we MUST have the “in addition” comment or we’re stuck in the proof.
Theorem 3.3.5
  Existence of a unique Perpendicular from an External points

This is a nice, clean-cut existence and uniqueness theorem.  Study it with an eye to strategy, please.  First you get a line that is a perpendicular; then you prove there’s only one of them. (This second part is a homework problem)

Homework Hints:

Problem 10 – study up on this one, it foreshadows Saccheri Quadrilaterals in Chapter 4

Problem 14
Lemma B is a lemma to Theorem 3.3.1 and a consequence of what precedes.

Problem 18
A construction style proof.  Just this once you may do it in two columns if you like

Problem 24
Suppose there’s a second….
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